A unified Petrov–Galerkin spectral method for fractional PDEs
نویسندگان
چکیده
Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0D t u + d j=1 c j [a jD 2μ j x j u ] + γ u = f , where 2τ , μ j ∈ (0, 1), in a (1 + d)-dimensional space–time domain subject to Dirichlet initial and boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multiD). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolicand elli ptic-like equations. We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demonstrate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than employing algebraically accurate traditional methods, especially when 2τ = 1. Finally, we formulate a general fast linear solver based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as timeand space-fractional advection (TSFA), parabolic FPDEs such as timeand space-fractional diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demonstrate the computational efficiency of the new approach in higher-dimensions e.g., (1 + 3), (1 + 5) and (1 + 9)-dimensional problems. c ⃝ 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Optimal Error Estimates of Spectral Petrov-Galerkin and Collocation Methods for Initial Value Problems of Fractional Differential Equations
We present optimal error estimates for spectral Petrov–Galerkin methods and spectral collocation methods for linear fractional ordinary differential equations with initial value on a finite interval. We also develop Laguerre spectral Petrov–Galerkin methods and collocation methods for fractional equations on the half line. Numerical results confirm the error estimates.
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملSpectral Methods for Tempered Fractional Differential Equations
In this paper, we first introduce fractional integral spaces, which possess some features: (i) when 0 < α < 1, functions in these spaces are not required to be zero on the boundary; (ii)the tempered fractional operators are equivalent to the Riemann-Liouville operator in the sense of the norm. Spectral Galerkin and Petrov-Galerkin methods for tempered fractional advection problems and tempered ...
متن کاملA Unified Spectral Method for FPDEs with Two-sided Derivatives; A Fast Solver
We develop a unified Petrov-Galerkin spectral method for a class of fractional partial differential equations with two-sided derivatives and constant coefficients of the form 0 D t u+ ∑d i=1 [cli aiD 2μi xi u+cri xiD 2μi bi u]+γ u = ∑d j=1 [κl j a jD 2ν j x j u+κr j x jD 2ν j b j u]+ f , where 2τ ∈ (0, 2), 2μi ∈ (0, 1) and 2ν j ∈ (1, 2), in a (1+d)-dimensional space-time hypercube, d = 1, 2, 3,...
متن کاملA Unified Spectral Method for FPDEs with Two-sided Derivatives; Part II: Stability, and Error Analysis
We present the stability and error analysis of the unified Petrov-Galerkin spectral method, developed in [1], for linear fractional partial differential equations with two-sided derivatives and constant coefficients in any (1 + d)-dimensional space-time hypercube, d = 1, 2, 3, · · · , subject to homogeneous Dirichlet initial/boundary conditions. Specifically, we prove the existence and uniquene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014